Determination of key residues in MRGPRX2 to ameliorate pseudo-allergic reactions induced by fluoroquinolones

Kelesidis, T., Fleisher, J., and Tsiodras, S. Anaphylactoid reaction thought to be related to ciprofloxacin: case report and review of the literature. Clin. The. 32515–526 (2010).
Lumry, WR et al. Randomized, placebo-controlled trial of icatibant, a bradykinin B(2) receptor antagonist, for the treatment of acute attacks of hereditary angioedema: the FAST-3 trial. Anne. Allergy Asthma Immunol. 107529–537 (2011).
Sivagnanam, S. & Deleu, D. Red man syndrome. Crit. Care 7119-120 (2003).
Subramanian, H., Gupta, K., Guo, Q., Price, R. & Ali, H. Mas-related gene X2 (MrgX2) is a novel G protein-coupled receptor for the antimicrobial peptide LL-37 in human mast cells: resistance to phosphorylation, desensitization and internalization of receptors. J. Biol. Chem. 28644739 (2011).
Lansu, K. et al. In silico design of new probes for the atypical opioid receptor MRGPRX2. Nat. Chem. Biol. 13529–536 (2017).
Reddy, VB, Azimi, E., Chu, L. & Lerner, EA Mas-linked G-protein-coupled receptors and cow-induced itch. J. Investig. Dermatol. 138461–464 (2018).
Alkanfari, I., Gupta, K., Jahan, T. & Ali, H. Naturally occurring MRGPRX2 missense variants display a loss-of-function phenotype for mast cell degranulation in response to substance P, hemokinin-1, human beta-defensin-3, and icatibant. J. Immunol. 201343–349 (2018).
Solinski, HJ, Gudermann, T. & Breit, A. Pharmacology and signaling of MAS-related G-protein-coupled receptors. Pharmacol. Round. 66570–597 (2014).
Haitina, T., Fredriksson, R., Foord, SM, Schioth, HB & Gloriam, DE The subset of G-protein-coupled receptors in the dog genome resembles that of humans more than that of rodents. BMC Genomics ten24 (2009).
McNeil, comics et al. Identification of a mast cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519237-241 (2015).
Tatemoto, K. et al. Immunoglobulin E-independent activation of mast cells is mediated by Mrg receptors. Biochemistry. Biophys. Res. Commmon. 3491322–1328 (2006).
Ennis, M., Lorenz, W., Kapp, B., Luben, L. & Schmal, A. Comparison of the histamine-releasing activity of cremophore E1 and some of its derivatives in two experimental models: the dog anesthetized in vivo and rat peritoneal mast cells in vitro. Agent Actions 16265-268 (1985).
Masini, E., Planchenault, J., Pezziardi, F., Gautier, P. & Gagnol, JP Histamine-releasing properties of Polysorbate 80 in vitro and in vivo: Correlation with its hypotensive action in dogs. Agent Actions 16470–477 (1985).
Mori, K., Maru, C. & Takasuna, K. Characterization of histamine release induced by fluoroquinolone antibacterial agents in vivo and in vitro. J.Pharm. Pharmacol. 52577-584 (2000).
Mori, K., Shibano, M., Satoh, H., Takasuna, K. & Furuhama, K. Differential response of mast cells separated from various organs and basophils from dogs to the fluoroquinolone antimicrobial levofloxacin. Camber. Toxicol. 75227-233 (2001).
Takasuna, K. et al. General pharmacology of the new quinolone antibacterial agent, levofloxacin. Arzneimittelforschung 43408–418 (1992).
Furuhata, K. et al. Histamine releasing properties of T-3762, a new fluoroquinolone antimicrobial agent for intravenous use. I. Effects of doses and infusion rate on blood pressure, heart rate and plasma histamine concentration. Biol. Pharma. Bull. 21456–460 (1998).
Robinson, EP, Faggella, AM, Henry, DP, and Russell, WL Comparison of histamine release induced by administration of morphine and oxymorphone in dogs. A m. J. Veterinarian. Res. 491699-1701 (1988).
Lee, D. & Johnson, DL Effect of D-tubocurarine and anesthesia on cardiac output in normal and histamine-depleted dogs. Can. Anesthesia. Soc. J 18157-165 (1971).
Hamamura-Yasuno, E., Iguchi, T., Kumagai, K., Tsuchiya, Y. & Mori, K. Identification of the canine ortholog of the human MAS-linked G protein-coupled receptor X2 (MRGPRX2) essential for pseudo – allergic reactions. Science. representing ten16146 (2020).
Nakagawa, T., Shimada, J., Mizushima, Y., Takaishi, T., and Morita, Y. Effect of ciprofloxacin on histamine release from human and rat mast cells. Jpn. J. Inflamm. 15337-338 (1995).
Furuhata, K. et al. Histamine releasing properties of T-3762, a new fluoroquinolone antimicrobial agent for intravenous use. II. Effect of increasing dermovascular permeability and action on peritoneal mast cells. Biol. Pharma. Bull. 21461–464 (1998).
Fukami, M., Suzuki, E., Igarashi, M., Miyado, M. & Ogata, T. Gain-of-function mutations in G-protein-coupled receptor genes associated with human endocrine disorders. Clin. Endocrinol. 88351–359 (2018).
Tao, YX Constitutive G-protein-coupled receptor activation and disease: an overview of activation mechanisms and therapeutics. Pharmacol. The. 120129-148 (2008).
Isberg, V. et al. Generic GPCR residue numbers: alignment of topological maps while accounting for gaps. Pharmacol Trends. 3622-31 (2015).
Munk, C. et al. GPCRdb: The G Protein Coupled Receptor Database – An Introduction. Br.J. Pharmacol. 1732195-2207 (2016).
Angel, TE, Chance, MR & Palczewski, K. Conserved waters mediate the structural and functional activation of A-family (rhodopsin-like) G-protein-coupled receptors. proc. Natl. Acad. Science. UNITED STATES 1068555–8560 (2009).
Jaakola, vice-president et al. The 2.6 Angstrom crystal structure of an antagonist-bound human A2A adenosine receptor. Science 3221211-1217 (2008).
Chan, HCS, Li, Y., Dahoun, T., Vogel, H. & Yuan, S. New binding sites, new opportunities for GPCR drug discovery. Biochem Trends. Science. 44312–330 (2019).
Zhao, N., Han, JG, Shyu, CR, and Korkin, D. Determining the effects of non-synonymous SNPs on protein-protein interactions using supervised and semi-supervised learning. PLoS calculation. Biol. tene1003592 (2014).
Shastry, SNP BS: Impact on gene function and phenotype. Methods Mol. Biol. 5783–22 (2009).
Porebski, G., Kwiecien, K., Pawica, M. & Kwitniewski, M. Mas-related G protein-coupled receptor-X2 (MRGPRX2) in drug hypersensitivity reactions. Before. Immunol. 93027 (2018).
Chompunud Na Ayudhya, C., Roy, S., Alkanfari, I., Ganguly, A. & Ali, H. Identification of gain and loss of missense variants of function in transmembrane and intracellular domains of MRGPRX2 for activation of mast cells by substance P. Int. J.Mol. Science. 205247 (2019).
Jacobson, MP et al. A hierarchical approach to predicting the protein loop of all atoms. Proteins 55351–367 (2004).
Jacobson, MP, Friesner, RA, Xiang, Z. & Honig, B. On the role of the crystal environment in determining protein side chain conformations. J.Mol. Biol. 320597–608 (2002).
Srivastava, V. et al. Synthesis of 1-(3′,4′,5′-trimethoxy)phenyl naphtho[2,1b]furan as a new anticancer agent. Bioorg. Med. Chem. Lett. 16911–914 (2006).
Sherman, W., Day, T., Jacobson, MP, Friesner, RA, and Farid, R. New procedure for modeling ligand/receptor-induced adjustment effects. J.Med. Chem. 49534-553 (2006).
Sherman, W., Beard, HS, and Farid, R. Use of an induced fit receptor structure in virtual screening. Chem. Biol. Drugs Dice. 6783–84 (2006).